

ImageJ2
Development Next Steps

Components of ImageJ2

● Major components of ImageJ2
1)Data model – ij.process
2)Display – ij.gui
3)Input/output – ij.io
4)Regions of interest – various
5)Scripting & plugins – ij.macro

● All of these areas have significant limitations and will
benefit from enhancements and refactoring

Components of ImageJ2

● Define/refine API for each component
1)Data model – ij.process→imagej.model
2)Display – ij.gui→imagej.display
3)Input/output – ij.io→imagej.io
4)Regions of interest – various→imagej.roi
5)Scripting & plugins – ij.macro→imagej.scripting

Defining the API
● Work together to draft the new API
● Once a week, spend a few hours in a room together

– Define service interfaces (OSGi-style)
● Then, each tackle different packages
● Keep each other apprised of progress (dev. Cycles)
● Iterate the design work as needed

Summary of Goals

Data Model
● [SLIM] N-dimensional data model (e.g., SLIM)
● [Fiji] Additional data types (imglib; avoid case logic)
● [TrakEM, Hessman] Coordinate systems (registration)
● [Landini] Color space support (e.g., HSB)
● [µManager] Support for gamma (imglib?)

Display
● [VisBio] Tiled viewer (large planes)
● [VisBio] Improve VirtualStack caching (from BF)
● [VisBio] Improve 3D Viewer (arbitrary slicing)
● [TrakEM] Better ImageWindow (multiple data objects)
● [µManager] Fix brightness/contrast
● [µManager] Better histogram display (JFreeChart?)
● [µManager] Integrate Image5D features into hyperstacks

I/O
● [Bio-Formats] Unified I/O service for file types
● [VisBio] Tiled VirtualStacks (large planes)

ROIs
● [TrakEM] Vector-based ROIs (not always bitmasks)
● [TrakEM] Better support for multiple ROIs
● [TrakEM] More flexible usage of ROIs/masks/thresholds
● [Doube] N-dimensional ROIs
● [Tinevez] Better GUI controls for ROIs (JHotDraw)
● [Tinevez] Separation of ROI data vs. display (OME?)

Architecture
● [Fiji] Documentation mechanism (annotations)
● [Fiji] Modular command framework (to record scripts)
● [Fiji] Remove AWT dependencies (better headless)
● [µManager] Clearer API for plugins (service interfaces!)
● [µManager] Hooks to extend the GUI (e.g., hyperstacks)
● [µManager] Use a framework enabling MDI model
● [Misc] Create an all-Swing GUI?
● [Compatibility] Existing code delegates to new code

Interoperability
● [FARSIGHT] Call ITK & FARSIGHT from Java (imglib?)
● [CellProfiler] Combine ImageJ and CellProfiler workflows
● [OMERO] Import/export data to/from OMERO database

Next Steps

Next Steps: Data
● Refine imglib library

– Gamma
– Coordinate systems (e.g., affine transforms)
– Tiles and caching

● Refactor ImageJ to use imglib Image instead of ImagePlus
● Will we need any layers on top of imglib Image?

Next Steps: Display
● Define interface for improved image viewer

– N-dimensional
– Support for tiles
– Support multiple data objects (imglib images, ROIs)
– Choose Image5D features to integrate
– Design with extensibility in mind

● Begin work implementing the interface
● Define interface for histograms
● Implement better histogram support with JFreeChart

Next Steps: I/O
● Split Bio-Formats into core and readers modules

– BF-core module will be BSD
– BF-readers module will stay GPL
– BF-core can then be bundled with ImageJ
– BF-core will read/write OME-XML and OME-TIFF
– BF-core will support all ImageJ “out of the box” formats
– BF-readers will cover microscopy-specific formats

● Develop a service-based mechanism for modular file
format support

● Migrate existing ImageJ formats into BF-core

Next Steps: ROIs
● Define interfaces for ROI hierarchy

– Use existing OME class hierarchy if possible (ome-xml.jar)
– To use ome-xml.jar, license must be compatible
– Separate ROI data (algorithms) from ROI display (overlays)

● Use JHotDraw for ROI display and manipulation
– But look for ways to preserve existing ImageJ ROI UI

Next Steps: architecture
● Integrate annotation-based plugins mechanism

– Upgrade existing core plugins, as examples
● Split ImageJ into modular components

– Use OSGi services as demonstrated by Rick & Grant
– Clearly delineate “external API” via appropriate interfaces
– Establish repository structure to match, using Maven
– Document development best practices on imagejdev.org

● Define interface for commands
– Needed for recording scripts
– Separates analysis workflow from UI

Next Steps: architecture
● Identify specific AWT dependencies

– E.g., GenericDialog
– Rearchitect to eliminate them

● Rework legacy code (ij.*) to call into new interfaces
● Application framework

– Internationalization
– Swing
– MDI

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18

