Visualization Approaches for Multidimensional Biological Image Data

Curtis T. Rueden and Kevin W. Eliceiri*

Laboratory for Optical and Computational Instrumentation

University of Wisconsin at Madison

*Address Correspondence to:

Kevin Eliceiri

eliceiri@wisc.edu

Laboratory for Optical and Computational Instrumentation

University of Wisconsin at Madison

1675 Observatory Drive

Madison, WI 53706
INTRODUCTION

Over the last twenty years there have been great advances in light microscopy with the development of techniques such as confocal laser scanning microscopy (CLSM)

[1, 2] ADDIN EN.CITE and multiphoton laser-scanning microscopy (MPLSM) [3] and fluorescence based techniques such as Fluorescence Resonance Energy Transfer (FRET) [4] and Fluorescence Lifetime Imaging (FLIM) [5]. These techniques have greatly improved the depth penetration, viability and discrimination capabilities that can be obtained with light based approaches. Optical sectioning allows for three-dimensional time-lapse observation of dynamic events and fluorescence-based techniques can assay not only the intensity of a fluorophore but other key attributes of fluorescence such a spectral and lifetime information. Multidimensional light microscopy techniques encompass all these spatial, temporal, spectral and lifetime dimensions and can also include additional dimensionality parameters such as the polarization state of a fluorophore. These techniques have revolutionized modern microscopy and yet have posed significant data management challenges in how to effectively store, analyze, and disseminate these complex datasets. Even with the more typical 3D-Time lapse (4D) datasets there have been significant challenges in how to analyze and disseminate this data. In this review we present some of the challenges in multidimensional approaches with an emphasis on 4D data and present some of the approaches of visualizing such data.

The great advances in computing in recent years have allowed for the increased development of advanced multidimensional microscopy approaches by allowing for improved acquisition capabilities including automated collection, larger dataset collection, faster collection and hardware based image processing at acquisition. As well these computational advances have had a profound impact on how one can analyze data. With the advent of digital data collection and readily available personal computer workstations has come the widespread use of sophisticated computational analysis by the microscopist. However, despite these advances, surprisingly there lacks a common infrastructure or framework in microscopy to help microscopists analyze and share data. Much of the analysis in microscopy is being done by commercial programs that use proprietary file formats and in many cases algorithms for their analysis. These proprietary programs while very powerful often are not transparent in their approach to the analysis. Below we detail some of the common approaches one can use in 2D and 3D analysis and discuss some of the approaches in visualization and storage that may be utilized to deal with files of increased dimensionality.

Common Visualization Approaches

Visualization in two dimensions

The most fundamental data visualization method for multidimensional microscopy data is one plane at a time, with controls for roaming between image slices across all dimensions. This technique is the most straightforward way to work within the limitations of a 2D screen, allowing the user to verify and study what was actually collected by the instrument, without worry that analysis techniques have somehow introduced errors or otherwise altered the data. The software should allow the user to jump between image planes quickly; in particular, fast animation should be feasible, for reproduction of the specimen’s progress over time. This requirement is more challenging, but even more important, when the dataset’s size exceeds the computer’s available memory. Lastly, it should be possible to probe individual pixels for their numerical values, since the images are inherently vague without them.

4D datasets lend themselves well to plane-by-plane visualization, since the two dimensions, focal plane and time, can be construed as vertical and horizontal axes, respectively. This paradigm can be expressed in the user interface in a variety of ways, such as with horizontal and vertical scroll bars bordering the image that control the dimensional position, or through the use of arrow keys for navigation between image planes. The software could even display all planes at once, tiling them at reduced resolution in a 2D matrix, for efficient comparison. These techniques become more cumbersome for dimensions beyond space and time, as additional axes must be introduced, resulting in image planes being distributed across three or more dimensions.

Once the data’s spatial representation has been chosen, the other key component in its display is how to color the pixels. Intensity datasets have a single value at each pixel, which can be mapped along a continuum from black to white (grayscale). For data in full color, there are three-color components—often red, green and blue—which can be mapped directly to red, green and blue on the screen, respectively. It is often useful to manipulate the data’s colorization, however. At minimum, brightness and contrast controls can be provided for affecting the overall lightness and variance between lowest and highest color values, respectively.

But these tools are merely shortcuts for specifying a color mapping between a pixel’s component values and corresponding color values quickly. Many image manipulation programs allow the complete specification of color tables that fully define such a mapping. Common color tables include grayscale, which ranges from black to white; pseudocolor, ranging from blue backwards through the rainbow to red; HSV, with varying hue resulting in colors from red through the rainbow to purple and back to red; fire, ranging from black to white through colors of increasing visual intensity such as blue, red and yellow; and ice, progressing from cyan to red through cooler colors such as blue, magenta and pink. For images with multiple values per pixel, each component can be associated with its own color table, with the final color for the pixel composited from the component color tables (usually either averaged or summed).

Although this scheme works for any number of pixel values, it becomes increasingly difficult to differentiate the contributions of each individual component as the number of pixel values becomes large. Since most color spaces are defined by three parameters (red, green and blue; hue, saturation and value; cyan, magenta and yellow; etc.), each unique color does not necessarily represent a unique combination of pixel values once the number of components exceeds three. This situation is generally the case with multispectral data, which must be boiled down somehow to fit into the three-color components of the color space. One simple technique is to allow the user to assign weights to each spectral channel, and then compute a weighted sum for the final intensity value. Alternately, three weights can be assigned for each channel, representing that channel’s respective contribution towards the red, green and blue color components, or toward the components for some other color space. These final values still must be associated with one color table each for mapping as described above. (Figure 1) More complex techniques, such as the application of spectral stripping algorithms, could be used, depending on the nature of the spectral data being analyzed—as long as the algorithm reduces the effective number of pixel components to three or less, a unique mapping between pixel values and color values onscreen can be achieved.

Additional analyses may be applied to more efficiently or accurately represent the data. Projections—such as maximum intensity projection, which takes the brightest pixel across all focal planes at each pixel location—creates a composite image that can quickly illustrate regions of scientific interest, since bright areas tend to stand out against the surrounding background. In some cases, other projection techniques such as minimum intensity projection—taking the darkest pixel across all focal planes at each pixel location—may be useful as well. Full color or multispectral images can be projected separately for each component of the pixel, or computed based on some composite brightness value or other criteria.

For data collected with a standard widefield fluorescence microscope, deconvolution is commonly performed to correct for blurring induced by the limited aperture of the objective[6].

Another important task is the ability to annotate image planes with textual and graphical overlays, to label structures and mark regions of interest (ROIs) (Figure 2). Of course, these markings are distinct from the acquired dataset, and intelligent visualization software stores them separately, both to preserve the integrity of the original data, and to retain an understanding of the overlays as separate entities. As such, the software can compute important statistics about specific overlays, such as area and perimeter for closed shapes, the distance measured by lines, or the coordinates marked by points. In addition, individual ROIs can be linked together across multiple dimensional positions; for example, the outline of a cell nucleus can be traced on a single image plane to compute its area at that depth, but if the nucleus is outlined at every slice and these overlays are associated with one another, they define a volume in 3D, from which the volume of the nucleus can be estimated. If these structures are identified at every time point in a 4D data series and then linked, the result is a 4D ROI tracing the motion of the nucleus in 3D through time. Such functionality becomes even more significant in applications capable of 3D visualization.

Visualization in 3D

The prevalence of modern 3D graphics hardware has made a plethora of additional, more complex visualization approaches possible, many of which are natural extensions into three dimensions of the methods described above. The simplest of such techniques is to stack the images vertically such that all focal planes are shown simultaneously, retaining controls for roaming through time, including animation of the image stack. Though the 3D structure of a volume projected onto a flat computer screen is ambiguous, allowing the user interactive control over the orientation of the structure mitigates this ambiguity to some extent. The most common approach to providing such interaction is to allow the camera to zoom, pan and rotate around the object of study, often through mouse gestures or using arrow keys on the keyboard.

Image stacks become less effective when there are a large number of closely spaced planes, since it is more difficult to see between the slices. Fortunately, there are additional techniques that can be utilized to deal with such a situation—the software can provide methods for cutting away obscuring outer layers and revealing important features within. To start, giving users control over the visibility of individual slices in the stack, as well as the option to configure the distance between adjacent slices, allows them to optimize the angle of view. In some circumstances, alternate projection modes besides perspective, such as parallel projection, may also assist in the visualization.

Even more direct is the ability to slice through the stack at an arbitrary orientation, resulting in an image plane interpolated from the original data representing how the sample would look imaged along that plane (Figure 3). Such cutting planes are a simple form of surface rendering; a more sophisticated technique could render along a surface defined by a specific pixel value, creating an isosurface, or along a curved surface corresponding to an important feature of the data. For example, if regions of interest have been defined as described above, those spanning three dimensions can serve as a basis for surface rendering, allowing visualization of the structure along the defined boundaries.

There are several well-known methods of interpolation, with a tradeoff between speed and quality. Nearest neighbor, which uses the value of the closest sample to a given point, is fast but can result in a blocky image. Multi-linear interpolation computes a weighted average between the nearest sample along each dimensional axis, and producing a smoother image at the expense of slower computation. Bicubic interpolation produces an even smoother picture by drawing on a larger number of nearby samples, but the algorithm is more expensive than multi-linear interpolation.

Another approach to volume rendering uses pixel transparency to create semi-translucent structures. This method introduces a fourth color component to each color table, alpha, that represents how opaque that pixel is. By assigning a small alpha value to low intensity values, and a large alpha value to high intensity values, brighter areas of the image become more apparent, while dark areas fade away to provide a view of layers beneath. Semi-transparent volume rendering typically results in a “fuzzy” structure that can be useful for understanding the general shape of the entity being studied.

Because pixel transparency provides another way to reveal what lies beneath outer layers of the volume, it can be put to many other good uses. Even something as simple as assigning a constant transparency value to individual slices of the volume can be helpful for scrutinizing the layers below.

Lastly, as mentioned above, many of the procedures used in 2D have analogues in three dimensions. For instance, the tiling 4D data browser model described earlier could be extended into a 5D data browser in 3D. Displays showing stacks of images in 3D could be tiled onscreen with synchronized viewing angle to compare the data’s basic structure across two additional dimensions, such as time and spectra (although due to the large amount of data being crowded onto the screen, such a presentation would be useful mainly as a first impression or for simple comparison between stacks). Another example of this extension would be an intensity projection of an image stack across another dimension, such as each slice of the stack representing the maximum intensity projection across time for that focal plane.

Strategies for Large Datasets

As additional dimensions such as spectra and lifetime become more typical, the total size of the dataset explodes. Once the dataset’s size approaches or exceeds the amount of available RAM, it becomes impossible to store the entire set of image planes in memory at once, which limits the speed and flexibility of the software to jump between visible images quickly. The simplest solution to the dilemma is subsampling, to reduce the data’s size to within the limits of available memory. Unfortunately, drastically reducing resolution or cutting out many planes often results in data with an insufficient number of samples to adequately represent the phenomenon being studied. Another solution is to simply give up on keeping everything in RAM, and maintain only the currently visible data in memory. The rest stays on disk and is read in as necessary when the user changes dimensional positions. The downside is that responsiveness suffers in this case, particularly animation.

A hybrid strategy combines these two approaches, creating low-resolution thumbnails—a subsampled version of the data—when the dataset is first loaded, maintaining them in memory all the time, but keeping only the currently visible data in memory at full resolution. When the user switches positions, the thumbnails are used for quick response, while the full resolution data is acquired from disk in the background and “burned in” once it has been loaded. One problem with this tactic is that the full dataset must still be read initially to create the thumbnails, at least the first time—once created, the thumbnails can be stored in a separate cache on disk for future use. Another significant issue is that the dataset cannot be quickly animated at full resolution. To mitigate this issue, software can cache numerous full resolution image planes in RAM simultaneously, along an axis of interest such as time, for faster animation. Deciding which planes to cache at which times (i.e., the cache algorithm) is a well-studied problem in computer science; the user can also be given some choice regarding the algorithm.

Lastly, as computers grow to be increasingly fast, it is becoming more and more feasible to keep all the full-resolution images in memory, but compressed in some fashion. When the user wishes to display an image plane, it is decompressed on the fly and displayed. This technique results in higher CPU usage but faster and more responsive display time if the machine can keep up. Many modes of compression, such as gzip, bzip, LZW, etc., are lossless, and may not necessarily save much RAM (although they often do). Others, such as JPEG and wavelet compression schemes, can be “lossy,” typically resulting in a much larger space gain with only a small decrease in quality, when the compression parameters are chosen appropriately. A multidimensional wavelet-encoding scheme is even capable of capitalizing on redundancy between image planes or across other dimensional axes, resulting in even more efficient compression rates [7]. In a sense, the subsampling approach described above is a very simple lossy compression method, and thumbnailing could conceivably use any compression mode that saves space, as long as the thumbnails can be decompressed and displayed quickly enough for fast animation.

Data Organization and Infrastructure

A crucial aspect of multidimensional microscopy data that is often overlooked is the rich set of metadata associated with the actual pixel values. Experimental parameters such as details of specimen preparation, hardware configuration, and conditions during acquisition are just as important as the raw pixels, and should be thoroughly recorded as metadata. If appropriate metadata is present, the software can make additional assumptions about the presentation of the associated pixel data. For instance, if a specimen’s dimensions in microns are given, the program can display the focal planes of an image stack spaced appropriately to represent the structure’s actual appearance in 3D, rather than having to make a guess. Another example is the user-specified overlays and ROIs mentioned above, which should ideally be stored along side the original pixels as metadata.

Unfortunately, as of this writing, the current reality is that no mature unified format exists to handle everyone’s needs across many disciplines. In fact there will probably always be metadata outside the scope of whatever format people concoct, and thus what is important is using a format that can gracefully ignore unknown metadata fields, and take advantage of known ones. To help address these issues in light microscopy the Open Microscopy Environment consortium (OME, www.openmicroscopy.org) has been developing a data model for microscopy metadata that is flexible enough to represent microscopy metadata that is currently generated and can be adapted to deal with new formats such as that from lifetime microscopy. This data model is represented in XML, and the resulting OME-XML [7] file can be written to the header of a TIFF as a convenient file format (OME-TIFF, http://www.openmicroscopy.org/formats/ometiff.html). The OME group is also working on the Bio-Formats library (http://www.loci.wisc.edu/ome/formats.html) that can import over 50 proprietary file formats, parse their metadata and for many map this to the corresponding OME-XML metadata fields.

Table 1: Selected 4D Visualization Software Packages

	Program
	Platform
	Availability
	URL

	ImageJ
	Cross
	Open source
	http://rsb.info.nih.gov/ij/

	VolumeJ
	Cross
	Open source
	http://bij.isi.uu.nl/vr.htm

	Volume Viewer
	Cross
	Open source
	http://rsb.info.nih.gov/ij/plugins/volume-viewer.html

	QT4D
	Cross
	To be released
	http://worms.zoology.wisc.edu/4d.html

	Image5D
	Cross
	Open source
	http://rsb.info.nih.gov/ij/plugins/image5d.html

	OsiriX
	Mac OS X
	Open source
	http://homepage.mac.com/rossetantoine/osirix/Index2.html

	BioImageXD
	Cross
	Open source
	http://www.bioimagexd.net/

	4D Data Browser
	Cross
	Open source
	http://www.loci.wisc.edu/ome/browser.html

	VisBio
	Cross
	Open source
	http://www.loci.wisc.edu/visbio

	Voxx
	Cross
	Freeware
	http://www.nephrology.iupui.edu/imaging/voxx

	Volocity
	Windows & Mac OS X
	Commercial
	http://www.improvision.com/products/Volocity/

	Imaris
	Windows
	Commercial
	http://www.bitplane.com/products/imaris/imaris_product.shtml

SUMMARY

Effective data analysis of the modern biological microscopy data set often necessitates a variety of different analysis strategies and thus often means the biologist may need to use a combination of software tools, both commercial and often-times open source. To facilitate this process there needs to be knowledge of what the approaches are and also practical ways of sharing this data in a non-proprietary way. Thus, for users of open-source and commercial software it is important to have common approaches for multidimensional data analysis that can be run in different software packages and still be effectively compared. Projects like the Open Microscopy Environment that aim to allow data sharing between open-source client tools like ImageJ and VisBio and commercial packages like Volocity and Imaris via the XML data model are a needed first step in providing a framework or infrastructure for microscopy analysis. As the field has gotten more quantitative in its approaches this need has only increased with the necessity of having a way to represent key attributes of the data in an open manner.

ACKNOWLEDGEMENTS

The authors wish to acknowledge the members of the LOCI lab (www.loci.wisc.edu) and support from NIH NIBIB Grant EB10084.

COMPETING INTERESTS STATEMENT

The authors declare no competing interests.

REFERENCES

1.
Amos, W.B. and J.G. White, How the confocal laser scanning microscope entered biological research. Biol Cell, 2003. 95(6): p. 335-42.

2.
White, J.G., W.B. Amos, and M. Fordham, An evaluation of confocal versus conventional imaging of biological structures by fluorescence light microscopy. J Cell Biol, 1987. 105(1): p. 41-8.

3.
Denk, W., J.H. Strickler, and W.W. Webb, Two-photon laser scanning fluorescence microscopy. Science, 1990. 248(4951): p. 73-6.

4.
Miyawaki, A., J. Llopis, R. Heim, J.M. McCaffery, J.A. Adams, M. Ikura, and R.Y. Tsien, Fluorescent indicators for Ca2+ based on green fluorescent proteins and calmodulin. Nature, 1997. 388(6645): p. 882-7.

5.
Lakowicz, J.R., H. Szmacinski, K. Nowaczyk, K.W. Berndt, and M. Johnson, Fluorescence lifetime imaging. Analytical Biochemistry, 1992. 202(2): p. 316-30.

6.
McNally, J.G., T. Karpova, J. Cooper, and J.A. Conchello, Three-dimensional imaging by deconvolution microscopy. Methods, 1999. 19(3): p. 373-85.

7.
Stefansson, H.N., K.W. Eliceiri, C.F. Thomas, A. Ron, R. DeVore, R. Sharpley, and J.G. White, Wavelet compression of three-dimensional time-lapse biological image data. Microsc Microanal, 2005. 11(1): p. 9-17.

6

